Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cancers (Basel) ; 15(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36831384

RESUMO

Arkadia (RNF111) is a positive regulator of the TGF-ß signaling that mediates the proteasome-dependent degradation of negative factors of the pathway. It is classified as an E3 ubiquitin ligase and a SUMO-targeted ubiquitin ligase (STUBL), implicated in various pathological conditions including cancer and fibrosis. The enzymatic (ligase) activity of Arkadia is located at its C-terminus and involves the RING domain. Notably, E3 ligases require E2 enzymes to perform ubiquitylation. However, little is known about the cooperation of Arkadia with various E2 enzymes and the type of ubiquitylation that they mediate. In the present work, we study the interaction of Arkadia with the E2 partners UbcH5B and UbcH13, as well as UbcH7. Through NMR spectroscopy, we found that the E2-Arkadia interaction surface is similar in all pairs examined. Nonetheless, the requirements and factors that determine an enzymatically active E2-Arkadia complex differ in each case. Furthermore, we revealed that the cooperation of Arkadia with different E2s results in either monoubiquitylation or polyubiquitin chain formation via K63, K48, or K11 linkages, which can determine the fate of the substrate and lead to distinct biological outcomes.

2.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142504

RESUMO

Arkadia is a positive regulator of the TGFß-SMAD2/3 pathway, acting through its C-terminal RING-H2 domain and targeting for degradation of its negative regulators. Here we explore the role of regions outside the RING domain (non-RING elements) of Arkadia on the E2-E3 interaction. The contribution of the non-RING elements was addressed using Arkadia RING 68 aa and Arkadia 119 aa polypeptides. The highly conserved NRGA (asparagine-arginine-glycine-alanine) and TIER (threonine-isoleucine-glutamine-arginine) motifs within the 119 aa Arkadia polypeptide, have been shown to be required for pSMAD2/3 substrate recognition and ubiquitination in vivo. However, the role of the NRGA and TIER motifs in the enzymatic activity of Arkadia has not been addressed. Here, nuclear magnetic resonance interaction studies with the E2 enzyme, UBCH5B, C85S UBCH5B-Ub oxyester hydrolysis, and auto-ubiquitination assays were used to address the role of the non-RING elements in E2-E3 interaction and in the enzymatic activity of the RING. The results support that the non-RING elements including the NRGA and TIER motifs are required for E2-E3 recognition and interaction and for efficient auto-ubiquitination. Furthermore, while Arkadia isoform-2 and its close homologue Arkadia 2C are known to interact with free ubiquitin, the results here showed that Arkadia isoform-1 does not interact with free ubiquitin.


Assuntos
Isoleucina , Ubiquitina-Proteína Ligases , Alanina/metabolismo , Arginina/metabolismo , Asparagina/metabolismo , Glutamina/metabolismo , Glicina/metabolismo , Isoleucina/metabolismo , Treonina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
4.
Molecules ; 27(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35458617

RESUMO

Losartan potassium salt (LSR) is a well-known antihypertensive drug with proven beneficial effects on human health. Its formulation with the non-toxic 2-hydroxypropyl-ß-cyclodextrin (2-HP-ß-CD) could improve its pharmacological profile. Thus, its molecular interactions are studied using a combination of Differential Scanning Calorimetry (DSC), Nuclear Magnetic Resonance (NMR) and Molecular Dynamics (MD). First, its complexation is shown through Differential Scanning Calorimetry as lyophilization provided distinct thermal properties in comparison to the mixture. The complexation is further proved by utilizing the chemical shift changes in the complexation and T1 values. Furthermore, the reversible favorable complexation was shown by MD calculations. Such physical chemical properties provide evidence that this formulation must be further explored through biological experiments.


Assuntos
Anti-Hipertensivos , Losartan , 2-Hidroxipropil-beta-Ciclodextrina/química , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacologia , Varredura Diferencial de Calorimetria , Liofilização , Humanos , Derivados da Hipromelose , Losartan/química , Losartan/farmacologia , Solubilidade
5.
Front Mol Biosci ; 9: 844129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281275

RESUMO

Single nucleotide polymorphisms (SNPs) are genetic variations which can play a vital role in the study of human health. SNP studies are often used to identify point mutations that are associated with diseases. Arkadia (RNF111) is an E3 ubiquitin ligase that enhances transforming growth factor-beta (TGF-ß) signaling by targeting negative regulators for degradation. Dysregulation of the TGF-ß pathway is implicated in cancer because it exhibits tumor suppressive activity in normal cells while in tumor cells it promotes invasiveness and metastasis. Τhe SNP CGT > TGT generated an amino-acid (aa) substitution of Arginine 957 to Cysteine on the enzymatic RING domain of Arkadia. This was more prevalent in a tumor than in a normal tissue sample of a patient with colorectal cancer. This prompted us to investigate the effect of this mutation in the structure and activity of Arkadia RING. We used nuclear magnetic resonance (NMR) to analyze at an atomic-level the structural and dynamic properties of the R957C Arkadia RING domain, while ubiquitination and luciferase assays provided information about its enzymatic functionality. Our study showed that the R957C mutation changed the electrostatic properties of the RING domain however, without significant effects on the structure of its core region. However, the functional studies revealed that the R957C Arkadia exhibits significantly increased enzymatic activity supporting literature data that Arkadia within tumor cells promotes aggressive and metastatic behavior.

6.
Am J Respir Crit Care Med ; 203(2): 202-210, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32757963

RESUMO

Rationale: Although early antimicrobial discontinuation guided by procalcitonin (PCT) has shown decreased antibiotic consumption in lower respiratory tract infections, the outcomes in long-term sepsis sequelae remain unclear.Objectives: To investigate if PCT guidance may reduce the incidence of long-term infection-associated adverse events in sepsis.Methods: In this multicenter trial, 266 patients with sepsis (by Sepsis-3 definitions) with lower respiratory tract infections, acute pyelonephritis, or primary bloodstream infection were randomized (1:1) to receive either PCT-guided discontinuation of antimicrobials or standard of care. The discontinuation criterion was ≥80% reduction in PCT levels or any PCT ≤0.5 µg/L at Day 5 or later. The primary outcome was the rate of infection-associated adverse events at Day 180, a composite of the incidence of any new infection by Clostridioides difficile or multidrug-resistant organisms, or any death attributed to baseline C. difficile or multidrug-resistant organism infection. Secondary outcomes included 28-day mortality, length of antibiotic therapy, and cost of hospitalization.Measurements and Main Results: The rate of infection-associated adverse events was 7.2% (95% confidence interval [CI], 3.8-13.1%; 9/125) versus 15.3% (95% CI, 10.1-22.4%; 20/131) (hazard ratio, 0.45; 95% CI, 0.20-0.98; P = 0.045); 28-day mortality 15.2% (95% CI, 10-22.5%; 19/125) versus 28.2% (95% CI, 21.2-36.5%; 37/131) (hazard ratio, 0.51; 95% CI, 0.29-0.89; P = 0.02); and median length of antibiotic therapy 5 (range, 5-7) versus 10 (range, 7-15) days (P < 0.001) in the PCT and standard-of-care arms, respectively. The cost of hospitalization was also reduced in the PCT arm.Conclusions: In sepsis, PCT guidance was effective in reducing infection-associated adverse events, 28-day mortality, and cost of hospitalization.Clinical trial registered with www.clinicaltrials.gov (NCT03333304).


Assuntos
Antibacterianos/administração & dosagem , Infecções por Clostridium/prevenção & controle , Pró-Calcitonina/sangue , Sepse/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/economia , Antibacterianos/uso terapêutico , Gestão de Antimicrobianos , Biomarcadores/sangue , Clostridioides difficile , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/etiologia , Esquema de Medicação , Monitoramento de Medicamentos , Farmacorresistência Bacteriana Múltipla , Feminino , Seguimentos , Grécia , Custos Hospitalares , Hospitalização/economia , Hospitalização/estatística & dados numéricos , Humanos , Análise de Intenção de Tratamento , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Sepse/sangue , Sepse/complicações , Sepse/mortalidade , Método Simples-Cego , Resultado do Tratamento
8.
Amino Acids ; 52(9): 1337-1351, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32996057

RESUMO

The corticotropin-releasing factor (CRF) and its CRF1 receptor (CRF1R) play a central role in the maintenance of homeostasis. Malfunctioning of the CRF/CRF1R unit is associated with several disorders, such as anxiety and depression. Non-peptide CRF1R-selective antagonists have been shown to exert anxiolytic and antidepressant effects on experimental animals. However, none of them is in clinical use today because of several side effects, thus demonstrating the need for the development of other more suitable CRF1R antagonists. In an effort to develop novel CRF1R antagonists we designed, synthesized and chemically characterized two tripeptide analogues of CRF, namely (R)-LMI and (S)-LMI, having their Leu either in R (or D) or in S (or L) configuration, respectively. Their design was based on the crystal structure of the N-extracellular domain (N-domain) of CRF1R/CRF complex, using a relevant array of computational methods. Experimental evaluation of the stability of synthetic peptides in human plasma has revealed that (R)-LMI is proteolytically more stable than (S)-LMI. Based on this finding, (R)-LMI was selected for pharmacological characterization. We have found that (R)-LMI is a CRF antagonist, inhibiting (1) the CRF-stimulated accumulation of cAMP in HEK 293 cells expressing the CRF1R, (2) the production of interleukins by adipocytes and (3) the proliferation rate of RAW 264.7 cells. (R)-LMI likely blocked agonist actions by interacting with the N-domain of CRF1R as suggested by data using a constitutively active chimera of CRF1R. We propose that (R)-LMI can be used as an optimal lead compound in the rational design of novel CRF antagonists.


Assuntos
AMP Cíclico/metabolismo , Descoberta de Drogas , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Proliferação de Células , Células HEK293 , Humanos , Camundongos , Domínios Proteicos , Células RAW 264.7
9.
Biomol NMR Assign ; 14(1): 73-78, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31792831

RESUMO

Ubiquitination is a post-translational modification that regulates a plethora of processes in cells. Ubiquitination requires three type of enzyme: E1 ubiquitin (Ub) activating enzymes, E2 Ub conjugating enzymes and E3 ubiquitin ligases. The E2 enzymes perform a variety of functions, as Ub chain initiation, elongation and regulation of the topology and the process of chain formation. The E2 enzymes family is mainly characterized by a highly conserved ubiquitin conjugating domain (UBC), which comprises the binding region for the activated Ub, E1 and E3 enzymes. The E2 enzyme UbcH7 (UBE2L3) is a known interacting partner for different types of E3 Ub ligases such as HECT, RING and RBR. A structural analysis of the apo form of the native UbcH7 will provide the structural information to understand how this E2 enzyme is implicated in a wide range of diseases and how it interacts with its partners. In the present study we present the high yield expression of the native UbcH7 E2 enzyme and its preliminary analysis via solution NMR spectroscopy. The E2 enzyme is folded in solution and nearly a complete backbone assignment was achieved. Additionally, TALOS+ analysis was performed and the results indicated that UbcH7 adopts a αßßßßααα topology which is similar to that of the majority of E2 enzymes.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Ressonância Magnética Nuclear Biomolecular , Espectroscopia de Prótons por Ressonância Magnética , Enzimas de Conjugação de Ubiquitina/química , Sequência de Aminoácidos , Domínios Proteicos , Soluções
10.
J Struct Biol ; 206(1): 119-127, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30825649

RESUMO

Venezuelan equine encephalitis virus (VEEV) is a new world alphavirus which can be involved in several central nervous system disorders such as encephalitis and meningitis. The VEEV genome codes for 4 non-structural proteins (nsP), of which nsP3 contains a Macro domain. Macro domains (MD) can be found as stand-alone proteins or embedded within larger proteins in viruses, bacteria and eukaryotes. Their most common feature is the binding of ADP-ribose (ADPr), while several macro domains act as ribosylation writers, erasers or readers. Alphavirus MD erase ribosylation but their precise contribution in viral replication is still under investigation. NMR-driven titration experiments of ADPr in solution with the VEEV macro domain (in apo- and complex state) show that it adopts a suitable conformation for ADPr binding. Specific experiments indicate that the flexibility of the loops ß5-α3 and α3-ß6 is critical for formation of the complex and assists a wrapping mechanism for ADPr binding. Furthermore, along with this sequence of events, the VEEV MD undergoes a conformational exchange process between the apo state and a low-populated "dark" conformational state.


Assuntos
Adenosina Difosfato Ribose/química , Vírus da Encefalite Equina Venezuelana/metabolismo , Simulação de Dinâmica Molecular , Domínios Proteicos , Proteínas não Estruturais Virais/química , Adenosina Difosfato Ribose/metabolismo , Animais , Vírus da Encefalite Equina Venezuelana/genética , Cavalos , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Ligação Proteica , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
11.
Methods Mol Biol ; 1824: 299-316, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30039415

RESUMO

The combination of virtual screening with biomolecular NMR can be a powerful approach in the first steps toward drug discovery. Here, we describe how computational methodologies to screen large databases readily available for testing small molecules, in synergy with NMR techniques focused on protein-ligand interactions, can be used in the early lead compound identification process against a protein drug target.


Assuntos
Simulação por Computador , Descoberta de Drogas/métodos , Ressonância Magnética Nuclear Biomolecular/métodos
12.
J Mol Biol ; 429(15): 2373-2386, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28647409

RESUMO

Arkadia (Rnf111) is an E3 ubiquitin ligase that plays a central role in the amplification of transforming growth factor beta (TGF-ß) signaling responses by targeting for degradation the negative regulators of the pathway, Smad6 and Smad7, and the nuclear co-repressors Ski and Skil (SnoN). Arkadia's function in vivo depends on the really interesting new gene (RING)-H2 interaction with the E2 enzyme UbcH5b in order to ligate ubiquitin chains on its substrates. A conserved tryptophan (W972) in the C-terminal α-helix is widely accepted as essential for E2 recruitment and interaction and thus also for E3 enzymatic activity. The present NMR-driven study provides an atomic-level investigation of the structural and dynamical properties of two W972 Arkadia RING mutants, attempting to illuminate for the first time the differences between a functional and a nonfunctional mutant W972A and W972R, respectively. A TGF-ß-responsive promoter driving luciferase was used to assay for Arkadia function in vivo. These experiments showed that the Arkadia W972A mutant has the same activity as wild-type (WT) Arkadia in enhancing TGF-ß signaling responses, while W972R does not. Only minor structural differences exist between the W972A RING domain and WT-RING. In contrast, the W972R mutant hardly interacts with E2. The loss of function correlates with structural changes in the C-terminal α-helix and an increase in the distance between the Zn(II) ions. Our data show that the position occupied by W972 within WT Arkadia is critical for the function of RING and that it depends on the nature of the residue at this position.


Assuntos
Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Alanina/genética , Alanina/metabolismo , Substituição de Aminoácidos , Arginina/genética , Arginina/metabolismo , Genes Reporter , Luciferases/análise , Espectroscopia de Ressonância Magnética , Proteínas Mutantes/genética , Proteínas Nucleares/genética , Conformação Proteica , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Triptofano/genética , Triptofano/metabolismo , Ubiquitina-Proteína Ligases/genética
14.
Biomol NMR Assign ; 9(2): 247-51, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25291978

RESUMO

Macro domains consist of 130-190 amino acid residues and appear to be highly conserved in all kingdoms of life. Intense research on this field has shown that macro domains bind ADP-ribose and other similar molecules, but their exact function still remains intangible. Macro domains are highly conserved in the Alphavirus genus and the Venezuelan equine encephalitis virus (VEEV) is a member of this genus that causes fatal encephalitis to equines and humans. In this study we report the high yield recombinant expression and preliminary solution NMR study of the macro domain of VEEV. An almost complete sequence-specific assignment of its (1)H, (15)N and (13)C resonances was obtained and its secondary structure predicted by TALOS+. The protein shows a unique mixed α/ß-fold.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Vírus da Encefalite Equina Venezuelana/metabolismo , Ressonância Magnética Nuclear Biomolecular , Espectroscopia de Prótons por Ressonância Magnética , Proteínas não Estruturais Virais/química , Sequência de Aminoácidos , Dados de Sequência Molecular , Isótopos de Nitrogênio , Estrutura Terciária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...